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While models in audio and speech processing are becoming deeper and more
end-to-end, they suffer from expensive training and a lack of robustness. In
this project, we draw from a m model of hearing and present a differen-
tiable auditory processing model, combining traditional signal processing ap-
proaches with deep frameworks. We showcase applications of this model in
spectrogram inversion, unsupervised learning and speech enhancement. Re-
sults showed promising speed advantage and audio quality, even with less
than an hour of training data. We also discuss the potential application of this
model on audio personalization and hearing disorders.

Introduction

In the last few years, audio and speech technol-
ogy has moved towards deep and end-to-end meth-
ods. While deep learning achieved great advances
in automatic speech recognition, source separa-
tion, speech enhancement and more, the deep
and data-driven methods are often constrained
by available data and overfitting of the models.
Specifically, training large models is expensive in
terms of both hardware and datasets. For example,
to pretrain a speech model for downstream tasks,
hundreds of hours of speech are needed (see re-
view in Mohamed et al., 2022). Compared with
this, the human auditory system can perform many
tasks such as source separation and emotion de-
tection effortlessly. Additionally, large, end-to-end
audio models are vulnerable to adversarial attacks,
with performance dropping drastically when small
modifications that are imperceptible to humans are
made to the audio clips (Wu et al., 2022).

Looking back at the history of audio and speech
processing, many model-based methods have been
developed where human perception is relevant.
The spectrogram, as a famous example, is com-

putationally similar to the human cochlea, where
sound in time domain is transformed into en-
ergy along various frequency bins as well as time.
While human ears perform such decomposition
through physical means, the spectrogram is com-
monly computed using fast Fourier transform. As
another example, the mel frequency cepstral coeffi-
cient (MFCC), after its development for engineer-
ing purposes, was found to be conceptually similar
to the cortical analysis of sound (see discussion in
e.g. Meyer & Kollmeier, 2011). While MFCCs are
obtained by applying another Fourier transform on
the spectrogram and finding its principal compo-
nents, auditory processes in the brain also repre-
sent sound by its spectral modulation (i.e., scale),
which can be modeled by a second Fourier trans-
form along the frequency axis. These connections
between the engineering tools and neuroscience
motivates us to explore more engineering applica-
tions of models in auditory neuroscience.

Although methods rooted in signal processing
are falling out of fashion in lieu of deep learning,
integrating them into deep learning models may
improve the data efficiency and robustness. The
model of auditory cortical processing, for exam-
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Figure 1. The differentiable auditory processing model in two stages. In the first stage, audio signal is
transformed into auditory spectrogram. In the second stage, auditory spectrogram is transformed into
STRFs. Image materials are taken from Elhilali (2004).

ple, has been directly applied for supervised tasks
such as speech detection (Mesgarani, Slaney, &
Shamma, 2006) and sound segregation (Elhilali
& Shamma, 2008). The concept of modulation-
based feature detection was also utilized to build
Gabor-based filters to detect spectral and tempo-
ral modulation in the audio signal. Models us-
ing such Gabor-based features outperformed the
MFCC counterparts and showed more robustness
to additive noise as well as speaking styles (Meyer
& Kollmeier, 2011). Recently, the Gabor-based
features have also been combined with differen-
tiable approaches to increase performance and ro-
bustness in voice type discrimination (Vuong, Xia,
& Stern, 2020), speech enhancement (Vuong, Xia,
& Stern, 2021), and music tagging (Ma & Stern,
2022). In these studies, The Gabor-based features
were seen as one convolutional layer of a neural
network, with the convolution filters constrained
to only extract Gabor-like spectral and temporal
modulations.

In this project, we aim to combine the audi-
tory signal processing methods and deep learn-
ing more closely towards a differentiable model
of auditory processing. Our model is com-
posed of two stages, an earlier stage cover-
ing the ear (cochlea) and early auditory nerve
components, and a later stage covering sub-
cortical and cortical auditory processing. The
code and audio demonstrations are available
at https://github.com/smiledra/diffaud.

The rest of the paper is organized as the following.
First, we give a more detailed introduction of our
differentiable auditory processing model. Then, in
the next three sections, we introduce three appli-
cations of the differentiable model of auditory pro-
cessing. First, we use the forward model of au-
ditory spectrogram to solve the inversion problem
— to get the audio waveform given an auditory
spectrogram. Secondly, we build an autoencoder
that combines the differentiable model with a neu-
ral network, and reconstructed auditory spectro-
gram and even audio from STRF representations.
Lastly, we demonstrate some preliminary results
from applying this model to speech enhancement
and towards source separation. We then discuss the
broader contributions and some future directions.

The differentiable auditory processing model

In this section, we give a brief introduction of
the forward model of auditory processing. We re-
fer readers to e.g. Chi, Ru, and Shamma (2005)
and Elhilali (2004) for more details on this model.

Step 1. Auditory Spectrogram. The first
stage of our model converts audio waveforms into
auditory spectrograms. Spectrograms are repre-
sentations of audio that display the energy in sound
along different frequency and time bins. De-
spite the popularity of end-to-end methods, spec-
trograms still remain common as the first step of
processing for many audio and speech models.
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The extraction of a spectrogram typically involves
short-time Fourier transform (STFT), from which
the magnitude is kept and phase discarded. This
poses a nontrivial problem if audio were to be re-
constructed from the spectrogram. Since phase
information is lost in the spectrogram, an infinite
amount of audio patterns only differing in phase
could all generate the same spectrogram.

The auditory spectrogram is conceptually sim-
ilar to the spectrogram, but the signal is ex-
tracted differently, with several potential advan-
tages. While a traditional spectrogram performs
STFT on windowed audio, the extraction of the
auditory spectrogram follows a few stages that are
based on early auditory processing in the human
ear. As shown in Figure 1, the audio signal is
passed through a bank of constant-Q filters, which
corresponds to the biological process in the basi-
lar membrane. Then, the signal is passed through
half-wave rectifying, first difference, and leaky in-
tegration that mimics transduction (changing the
signal from physical vibration to neural signal) and
downstream processes that take place in the au-
ditory nerve. Similar to the traditional spectro-
gram, the auditory spectrogram also displays en-
ergy along the frequency and time axes. However,
the auditory spectrogram represents information in
a way that more closely matches human perception
and auditory processing.

Step II. Spectro-Temporal Receptive Fields
(STRFs). After a spectrogram is obtained, the
brain continues to extract relevant features from
the spectrogram for higher-level information,
which eventually leads to complex tasks such as
comprehension of words and appreciation of mu-
sic. In neuroscience, it has been proposed that
humans and other animals alike analyze audio in
terms of its spectral and temporal modulations.
This is conceptually equivalent to applying 2D
band-pass filtering to the auditory spectrogram.
Such a band-pass filter can be described by two
parameters: the scale (€2, or spectral modulation),
which is the pass band along the frequency axis,
and the rate (w, or temporal modulation), the pass

band along the temporal axis. For one single neu-
ron with a tuned frequency f at a given time ¢, its
activation r(f) at a certain time can be then charac-
terized as a function of frequency, scale, and rate:

rg(t) = STRE(f, 1; Q, w) (1)

where STRF(.) stands for the 2D band-pass fil-
ter. With a bank of such filters, the cortical anal-
ysis of a sound can then be represented as a four-
dimensional cube along frequency, time, scale, and
rate. The linearity of the STRF model makes it
easily interpretable: a high scale (approx. 4-6
cycles/octaves) corresponds to pitch-related infor-
mation, as the fine structure along the frequency
axis often corresponds to multiples of the fun-
damental frequency; a low scale (approx. 0-3
cycles/octaves) often corresponds to information
such as vowel identity and musical timbre, as the
coarse structure along the frequency axis corre-
sponds to the transfer function of the vocal tract
or musical instrument (see Elliott & Theunissen,
2009 for in-depth discussions). In temporal mod-
ulation, a slower rate (e.g., around 4 Hz) may cor-
respond more to syllable-level information, and
faster rates (e.g. 20-30 Hz) corresponds more to
the temporal fine structure.

Differentiability. The pipeline from wave-
form to cortical representations using STRF fea-
tures was made fully differentiable under JAX
(Bradbury et al., 2018). For this project, we use
back-propagation to update parameters including
the scale and rate in the cortical filterbank. In Case
I, we also use differentiability to perform iterated
updates for model inversion.

Case L. Inversion of Auditory Spectrogram

The problem of spectrogram inversion has long
been of interest. Recently, neural networks have
been trained to solve this problem in a black-box
manner. For example, Kumar et al. (2019) trained
a general adversarial network with more than 4
million parameters on 20+ hours of speech. Ad-
ditionally, training needs to be done separately for
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different types of tasks (e.g. speech synthesis vs.
music generation). On the other hand, traditional
methods for spectrogram inversion that do not re-
quire training also exist. For example, the Griffin-
Lin algorithm (Griffin & Lim, 1984) was proposed
to obtain the audio through iterated update. Simi-
larly, a iterative algorithm has been proposed for
the auditory spectrogram (Chi et al., 2005), and
was applied to audio resynthesis from its corti-
cal representations (Zotkin, Chi, Shamma, & Du-
raiswami, 2005). Furthermore, a comparison be-
tween iterative methods on the two types of spec-
trograms was made in Decorsiere, Sgndergaard,
MacDonald, and Dau (2014), arguing that not only
is auditory spectrograms easier to invert, but also
that bringing human perception into the loop of it-
erative methods can even increase performance of
traditional spectrogram inversion. In this section,
we use the first half of our differentiable model to
perform spectrogram inversion.

Method. We implemented the forward model
in JAX, and used automatic differentiation to ob-
tain the gradients for iterative updates. Our im-
plementation conceptually adheres to the one de-
scribed in (Chi et al., 2005), with modifications in
parallelization and vectorization to utilize the GPU
speedup available ot JAX. Due to the nature of the
algorithm, no training is necessary for spectrogram
inversion. Testing is done using clips in the Com-
mon Voice corpus (Ardila et al., 2019). All audio
clips are sampled at 16 kHz.

The auditory spectrogram can be extracted
with different resolution, compression parameters,
among other customizations. In this project, we fo-
cus on parameters that is commonly used for mod-
eling in auditory neuroscience. We used 128 fre-
quency channels, and no compression (i.e. iden-
tity) at the outer hair cell stage.

For the iterative update algorithm, we initialized
the audio at zero and used the forward model to
obtain the gradient of the loss with respect to the
audio. The audio is then updated using gradient
descent with learning rate 0.025. After every ten it-
erations, we plot the spectral convergence between

Original Auditory Spectrogram

Auditory Spectrogram of Recostructed Audio

Waveform of original and reconstructed audio

0.000 0.005 0.010 0.015

Figure 2. Top: the auditory spectrogram of the
ground-truth audio. Middle: the auditory spec-
trogram of the reconstructed audio. Bottom: a
close look on the audio of a fraction (0.188 s, 300
frames) of a vowel; the black line represents the
original audio, and the red line represents the re-
constructed audio.

the reconstructed audio % and the ground truth x:
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where AS (.) stands for the auditory spectrogram
transform and F stands for the Frobenius norm.

Results. The reconstructed audio generally
has high quality, although some parts of the audio
sounded artificial. When the auditory spectrogram
of the original and reconstructed audio were plot-
ted, they look almost identical (see Figure 2). Ad-
ditionally, as the auditory spectrogram preserves
some low-frequency phase information, the phase
of such low frequencies was restored in the re-
constructed audio. As shown in the bottom panel

C
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Figure 3. The loss (spectral convergence) of the
reconstructed audio as a function of time, plotted
in log-log space. Each blue line represents one
of ten 2-second audio tokens. The black vertical
line marks the two-second threshold, which is the
bound for real-time conversion.

of Figure 2, the slower, dominating frequency of
the reconstructed audio matches the original al-
most exactly, and the higher frequencies deviated
locally. This showcased one advantage of the au-
ditory spectrogram, that some phase information
(which might be the ones that are important to hu-
man perception) are preserved.

In terms of speed, the spectrogram inversion al-
gorithm was able to reconstruct intelligible audio
in real time (approx. 25 iterations). If more itera-
tions are run, the reconstructed audio can approach
the quality of the original audio. In the following
sections, we set the number of iterations at 300 it-
erations.

Discussion. Using the auditory spectrogram
for spectrogram conversion could have the follow-
ing advantages compared with the spectrogram.
Specifically, the phase delays in the constant-Q fil-
terbank creates different delays in different chan-
nels, which allows the auditory spectrogram to re-
tain some phase information. While this is known
to happen in early human auditory processing as
well, the phase information at this resolution is
completely lost in the spectrogram. Therefore,

the auditory spectrogram allows for extra informa-
tion to be preserved for inversion. Additionally, as
phase information for higher frequencies are lost in
human auditory processing early on, it is possible
that disturbing the phase information in the higher
frequencies do not lead to much difference in hu-
man perception. Therefore, inverting the auditory
spectrogram could be more faithful to human per-
ception and therefore more robust.

Case II. Speech Autoencoders

In the previous section, we focused on only
the cochlear part of the model. Now, we ex-
tend to the cortical part the model in order to ex-
plore the complex cortical feature space for au-
dio processing. Here, as a first step, we present
autoencoders trained using STRFs. Specifically,
a small convolutional neural network (CNN) was
trained to reconstruct the auditory spectrogram
from STRF representations, and training occured
jointly for both the STRF step and CNN recon-
struction. This autoencoder architecture has two
motivations. Firstly, it has been of interest to re-
construct sound from cortical representations. In
neuroscience, speech can be reconstructed from
single-neuron recordings from ferrets, using a re-
verse filtering approach based on the STRF model
(Mesgarani, David, Fritz, & Shamma, 2009). Such
reconstruction can also have engineering applica-
tions. For example, sounds can be manipulated
in the STRF space and then resynthesized into
waveform. As a result, manipulations like chang-
ing pitch, timber, or morphing two sounds to-
gether are possible (Zotkin et al., 2005). With re-
spect to the current project, a differentiable model
and related deep approaches give the potential to
perform higher-quality synthesis and manipula-
tions. Secondly, using a convolutional architecture
with Gabor feature detectors, Vuong et al. (2021)
has designed a linear autoencoder on speech. In
their work, the autoencoder was run on log mel-
spectrograms instead of the auditory spectrogram,
and the model architecture was computationally
similar, but implemented spectrotemporal filters



6 LESLIE LI

STRFs, male speaker STRFs, female speaker

1 ®®e # )
6 ' b o ".
v |® °
m 4
247 .
] & | °
p Qe ! o0 °
04 e e®® o] e® e® ©
‘ . : ‘ . :
0 20 40 0 20 40

Rate Rate

Original Spectrogram Reconstructed Spectrogram

Figure 4. Results of the STRF-based autoencoder. Left: the learned STRF parameters. Each dot rep-
resents one STRF parameter, with its spectral modulation plotted along the y-axis, and temporal modu-
lation along the x-axis. Red dots indicate downward-shifting STRFs (i.e., frequency modulation moves
downwards along time), and black dots indicates upward-shifting STRFs. STRFs parameters are plotted
separately for the two models trained on different speakers. Right: one example of the auditory spectro-
gram reconstructed by the autoencoder, as well as the original. The male speaker model was used.

using cross-correlation with Gabor features instead
of bandpass filtering as in the neuroscience studies.
The autoencoder results indicate that the trained
autoencoders were able to perform near-perfect re-
construction of the log mel-spectrogram. Addi-
tionally, the authors found that successful models
learned spectrotemporal filters that are relatively
low in both spectral and temporal modulation, sim-
ilar to what has been observed in humans. In the
current study, it is worth replicating these results
in our model, which is implemented more closely
adhering to neuroscience modeling. Additionally,
with the results from the previous section on audi-
tory spectrogram inversion, it is possible to recon-
struct STRF representations all the way to audio.

Method. In our model, we used the corti-
cal part of the differentiable auditory processing
model to extract STRF representations from audi-
tory spectrograms, and a small CNN to reconstruct
the auditory spectrogram. Following Vuong et al.
(2021), we used 30 STRFs. Half of the STRFs are
upward-tilting and half are downward-tilting. The
STRFs are initialized uniformly random between
scale [0, 8] and rate [0,30]. The CNN has three
layers, with respectively 10, 2, and 1 channels, and
3 x 3 filters within each layer, and gelu activation
function at the end of each layer.

In this paper, we report two models that are re-
spectively trained on one male speaker and one fe-

male speaker. The speech data is obtained from
the Wall Street Journal corpus (Paul & Baker,
1992), and each speaker contained around 40 min-
utes of speech material. Each model is trained
for 200k steps with the adam optimizer, which
jointly optimized the STRF and CNN parameters.
The learning rates were initialized at 0.001. For
each step, we use a minibatch of 4 samples of one
second (200 samples in the auditory spectrogram)
each, which is randomly sampled from the training
dataset.

Results. The results suggested that the small
convolutional neural network was able to fit a spec-
trogram well with a small amount of training data
(less than one hour). One example of spectrogram
reconstruction is shown in Figure 4. To recon-
struct the audio sample, we also used the auditory
spectrogram inversion introduced in the previous
section to obtain audio clips corresponding to the
spectrogram Audio examples are included in the
project website, which sounds nearly identical to
the ground truth.

Additionally, we observed that the learned
STRF parameters are concentrated in regions
low in both spectral and temporal modulation.
This happened among all models including those
trained during the parameter search that are not
included in the results. We also observed some
differences between the STRF parameters that are
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specific to the training speaker. In the model
trained on the male speaker, the STRFs that are
greater than 3 cycles/octaves in scale are generally
concentrated among higher scale regions (5-8 cy-
cles/octaves), while in the model trained on the fe-
male speaker, the scales of the STRFs are shifted
to lower regions (3—7 cycles/octaves). Consider-
ing that scales in this range mostly represents har-
monics that are related to pitch, this pattern is ex-
pected considering that the lower pitch of the male
speaker would lead to more densely distributed
harmonics, and therefore higher scale. This sug-
gests that the STRFs are optimized for the specific
distribution of the audio material.

Discussion. Our results replicated that of
(Vuong et al., 2021). Unlike their model, how-
ever, we were not able to obtain satisfying recon-
struction using a linear decoder alone. This is ex-
pected considering that our STRF feature extrac-
tion step is more than a simple convolution with
finite-length filteres, and therefore cannot be re-
constructed using a single convolutional decoder.
Additionally, with the tradeoff between model sim-
plicity and reconstruction quality, we opted for the
latter in order to obtain high-quality audio using
spectrogram inversion.

Case II1. Speech Enhancement

In the previous section, we reported high-quality
reconstruction of auditory spectrograms by a CNN
from STRF features. A natural extension of the
autoencoder structure is whether it can be used in
speech enhancement. It has been postulated that
STRF features are well-suited for scene analysis
and source segregation. For example, STRF-based
models have been successful in source segrega-
tion (Elhilali & Shamma, 2008). The Gabor-based
STRF model has also been applied to voice activ-
ity detection (Vuong et al., 2020) and music tag-
ging (Ma & Stern, 2022), tasks that separate dif-
ferent types of audio that differ greatly in temporal
modulation (Ding et al., 2017), among other as-
pects. Furthermore, it has been shown that speech
enhancement can benefits from loss not only on

spectral domain, but also in STRF domain (Vuong
et al., 2021). These successful results motivates
us to use the autoencoder structure with STRF fea-
ture extractors to perform speech enhancement di-
rectly. Specifically, instead of clean auditory spec-
trograms as input, we corrupted the input spectro-
grams with additive white noise. The model is then
trained to minimize the loss with the clean version
of the spectrogram.

Additionally, we trained the autoencoder to per-
form a even harder task — instead of white, sta-
tionary noise, if the noise to be filtered out is an-
other speaker, would the autoencoder be able to re-
construct the spectrogram with the “noise” speaker
filtered out? This task is known as the cocktail
party problem (Elhilali, 2017), and is much easier
in normal-developing humans compared with ma-
chines. Particularly, when humans are presented
in a cocktail party scene, the STRF responses are
found to be stronger for the attended speaker rel-
ative to the unattended speaker, likely due to top-
down feedback from higher-level cortical regions
(Ding & Simon, 2012). While in neural net-
works that are feed-forward, top-down feedback is
harder to implement, we can use the convolutional
decoder to learn some speaker-specific selection.
Additionally, inspired by the previous section, if
STRFs display specificity for e.g. the pitch of the
speaker, then allowing flexible STRFs to be fitted
may also help in retaining the speech signal from
one speaker while removing that of the unattended
speaker.

Method. For both speech enhancement prob-
lems, we used the same autoencoder architecture,
with only a slight increase in the number of chan-
nels in the CNN decoder: the three layers here
have 10, 5, and 1 channels. Other than the change
in the input-output pair, the training paradigm was
the same as described in the previous section. For
white noise enhancement, we trained models on
only the male speaker (i.e. 40 min of speech). Sep-
arate models were trained with different signal-to-
noise ratio (SNR) in the training data: -10, 0, and
10 dB, respectively.
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Figure 5. Results on speech enhancement against additive white noise. Top left: the auditory spectro-
grams of speech with additive noise (Noisy Input), the output of the trained autoencoder (Model En-
hanced), and the clean version of the speech (Ground Truth). Bottom left: a zoom in of the waveform
of a fraction of a vowel (0.188 s, 300 frames). Right: Test loss as a function of training time. Spectral
convergence with the noisy input (black) and with the clean output (red) are plotted. The -10 dB SNR

model was used for all plots in this figure.

For the cocktail party paradigm, we trained
models on reconstructing the male speaker with
the female speaker as noise. We trained separate
models with 0, 10, and 20 dB SNR.

Results. As shown in Figure 5, the autoen-
coder model performed well on the speech en-
hancement task. The enhanced auditory spectro-
gram closely resembles the ground truth. By plot-
ting the spectral convergence, we can also observe
that the reconstructed spectrogram is much more
similar to clean speech than the noisy version. We
also found that when all else is held the same, mod-
els that were trained on noisier inputs learned to
remove noise better, which suggests the possibility
that the SNR levels in the training data could be
further decreased.

The audio example for the cocktail party
paradigm is displayed online. In testing, while
the model cannot eliminate the female speaker in
the reconstructed speech, the female speaker did
become less intelligible and quieter. Of note, al-
though the model is only trained on one male and
female speaker pair, when tested on a novel female

speaker, the model was also able to perform a sim-
ilar level of enhancement, selecting the same male
speaker from the unseen female speaker. This sug-
gests that the model was able to generalize to some
novel speakers.

Discussion. The results suggest great poten-
tials for the STRF-based model to perform speech
enhancement. Our autoencoder model has the ad-
vantage of being lightweight and requiring little
training data. The total number of parameters for
the STRF feature extractor is only 60, and approx-
imately 4-5k for the convolutional decoder. The
small size of the also makes the required training
data small. As a result, this architecture has po-
tential applications in low-resource settings, such
as enhancing one particular speaker’s speech in a
video conference or in Al-based headphone de-
noising, where only a few minutes of the target
speaker speech is available. Additionally, as the
encoder only involves filtering and the decoder is
fully convolutional, a trained model can be applied
to an arbitrary duration of speech, which can be
tailored to the hardware’s capacity.
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General Discussion

In this project, we contributed a differentiable
model of auditory processing. Using JAX, we were
able to not only combine traditional signal pro-
cessing with deep learning, but also utilize GPU
acceleration in signal processing to achieve spec-
trogram inversion in real time. Additionally, the
spectrotemporal model showed promising results
on speech enhancement and source separation.

There are some immediate future directions
to be pursued. For one, in the current exper-
iments for speech enhancement, we have per-
formed a very simple task (additive white noise)
and a very difficult task (cocktail party problem).
While white noise has completely different spec-
trotemporal modulation properties compared with
speech, speech is maximally similar with speech
itself. It also seems like the models easily han-
dled white noise but had space for improvement
for the cocktail party case. To explore the capac-
ity of the STRF model in speech enhancement, it
would therefore be sensible to try something in be-
tween, such as music source separation or speech
enhancement from other types of noise.

Another potential direction is to perform further
enhancement on the spectrogram inversion task.
Currently, the inverted audio was very similar to
the original, but artifacts can be identified when
listening closely. One potential way to further en-
hance the generated audio is to pass it through a
small neural network (e.g., an RNN) that trans-
forms the reconstructed speech into, ideally, the
original speech. Further improvment on the au-
dio quality can make this model a better candidate
for tasks such as speech enhancement and speech
synthesis.

In the long term, this model can also be applied
towards audio personalization. For example, given
cortical response measurable through e.g. EEG,
parameters of the auditory model can be estimated.
In this project, we already performed fitting for the
STRF parameters. Under the same framework, the
cochlear parameters can also be fitted. This in-
cludes the filter parameters for each cochlear fil-

terbank in frequency decomposition, amount of
cochlear compression, and the decay rate in leaky
integration. Obtaining individualized parameters
for each listener or the same listener in different lis-
tening scenario can help create personalized listen-
ing experiences. Additionally, for cochlear-related
abnormalities, our model can also help build hear-
ing aid devices that is optimally fit to an individual.
As a precursor, Drakopoulos and Verhulst (2023)
used a deep model to fit hearing aid parameters
to compensate for two different types of hearing
loss. While their model stops at the auditory spec-
trogram, our model may be able to continue to the
brain, and therefore use non-invasive brain record-
ing techniques like EEG and MEG to collect re-
sponse for supervision.
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